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a b s t r a c t

Artificial viscosity can be combined with a higher-order discontinuous Galerkin finite
element discretization to resolve a shock layer within a single cell. However, when a
non-smooth artificial viscosity model is employed with an otherwise higher-order approx-
imation, element-to-element variations induce oscillations in state gradients and pollute
the downstream flow. To alleviate these difficulties, this work proposes a higher-order,
state-based artificial viscosity with an associated governing partial differential equation
(PDE). In the governing PDE, a shock indicator acts as a forcing term while grid-based dif-
fusion is added to smooth the resulting artificial viscosity. When applied to heat transfer
prediction on unstructured meshes in hypersonic flows, the PDE-based artificial viscosity
is less susceptible to errors introduced by grid edges oblique to captured shocks and
boundary layers, thereby enabling accurate heat transfer predictions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The focus of this work is shock capturing for higher-order discretizations with a particular emphasis on shock capturing
for strong, steady shocks. A specific motivation is the simulation of hypersonic flows for the estimation of heat transfer loads.
Unstructured meshes offer significant promise for computational aerothermodynamic analysis on complex geometries, but
solution quality using unstructured meshes for current state-of-the art methods is far inferior to that of structured meshes
[2,4,3,5,6,1]. The poor solution quality manifests itself even in symmetric, simplified test cases with poor prediction of peak
heat transfer rates and asymmetric surface heat transfer distributions. The problem stems from the dependence of current
shock capturing methods on the alignment of the mesh with the shocks. For simple problems, structured meshes can be de-
signed to align the mesh with the shock such that numerical errors in shock capturing can be significantly reduced. However,
for general meshes that do not align with the shock, the numerical errors at strong shocks can be significant and lead to non-
physical variations that convect downstream to the boundary layer and corrupt surface heat transfer predictions.

Artificial viscosity, pioneered by von Neumann and Richtmyer [7], has been a common method of shock capturing in the
context of streamwise upwind Petrov–Galerkin (SUPG) finite element methods, as proposed by Hughes et al. [8–11].
Researchers such as Hartmann and Houston [12,13] and Aliabadi et al. [14] have adopted this approach for use in discontin-
uous Galerkin methods as well, with good results, albeit only for p ¼ 1 polynomial solutions.

The approach developed in this work is an extension of the sub-cell shock capturing method proposed by Persson and
Peraire [15]. Specifically, Persson and Peraire introduced an elementwise-constant artificial viscosity that scales with the res-
olution length scale of a higher-order finite element method, h=p, such that the shock width is also Oðh=pÞ. Thus, for suffi-
ciently high p, the shock can be captured within a single element. To locate the shocks in the flow field, Persson and Peraire
. All rights reserved.
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developed a sensor based on the magnitude of the highest-order coefficients in an orthonormal representation of the
solution.

As will be described in Section 3, an elementwise-constant artificial viscosity model has some inherent shortcomings.
Specifically, element-to-element jumps in artificial viscosity lead to oscillations in state gradients that can corrupt the
smoothness and accuracy of the downstream flow field. This research develops a smoother artificial viscosity by employing
an artificial viscosity PDE model which is appended to the system of governing equations. Further, by combining the smooth
PDE-based artificial viscosity with higher-order discretizations, the dependence of shock capturing on the grid orientation
can be significantly reduced.

While the discretization used in this paper is the discontinuous Galerkin (DG) finite element method (FEM), the proposed
shock-capturing approach is not strongly dependent on the particular higher-order method and will likely be equally effec-
tive for other discretizations in which sub-cell resolution is possible (SUPG/GLS, spectral volume, spectral difference, etc.).
DG was first introduced by Reed and Hill [16] for the neutron transport equation. Much later, a foundation for DG methods
applied to non-linear hyperbolic problems was established by Karniadakis et al. [17–25]. Independently, Allmaras and Giles
[26,27] developed a second-order DG scheme for the Euler equations, building off of the work of van Leer [28–31]. Bassi and
Rebay and Bey and Oden notably demonstrated the capabilities of DG for both the Euler and Navier–Stokes equations
(including Reynolds Averaged Navier–Stokes) [32–36].

Section 2 reviews the DG FEM discretization of the compressible Navier–Stokes equations. Included in the review is the
modification to the governing equations to append an artificial viscosity matrix for shock capturing. Section 3 motivates the
use of a smooth, higher-order representation of artificial viscosity by highlighting the difficulties of a non-smooth formula-
tion in one and two dimensions. Section 4 then presents the chief innovation of this research, a PDE for the control of arti-
ficial viscosity, and provides additional comparisons to a non-smooth formulation. Numerical results, including a hypersonic
application of the new artificial viscosity model, are presented in Section 5.
2. Discretization

Let uðx; tÞ : Rd � Rþ ! Rm be the vector of m-state variables in d-dimensions for a general conservation law in the phys-
ical domain, X � Rd, given in the strong form by,
@u
@t
þr � FðuÞ � r � F vðu;ruÞ ¼ 0; ð1Þ
where FðuÞ : Rm ! Rm�d is the inviscid flux vector and F v ðu;ruÞ : Rm � Rm�d ! Rm�d is the viscous flux.

2.1. Compressible Navier–Stokes equations

In the compressible Navier–Stokes equations, the conservative state vector is, u ¼ ½q;qv i;qE�T , where q is the density, v i

is the velocity in the ith coordinate direction and E is the total internal energy. The flux vectors are,
F iðuÞ ¼
qv i

qv iv j þ dijp
qv iH

264
375; F v

i ðu;ruÞ ¼
0
sij

v jsij þ jT
@T
@xi

264
375;
where p is the static pressure, H ¼ Eþ p=q is the total enthalpy, dij is the Kronecker delta, sij is the shear stress defined below,
jT is the thermal conductivity, T ¼ p=qR is the temperature and R is the gas constant. The pressure is related to the state
vector by the equation of state, p ¼ ðc� 1ÞqðE� 0:5v iv iÞ, where c is the ratio of specific heats. The shear stress is,
sij ¼ lð@v i=@xj þ @v j=@xiÞ � dijk@vk=@xk, where l is the dynamic viscosity and k ¼ � 2

3 l is the bulk viscosity coefficient. Here
the dynamic viscosity is assumed to adhere to Sutherland’s Law, and the thermal conductivity is related to the viscosity by
the Prandtl number, Pr. In the remainder of the paper, the following notation will be used for the viscous fluxes,
F v
i ðu;ruÞ ¼ Av

ijðuÞ
@u
@xj

;

where Av
ij 2 Rm�m.

The discontinuous Galerkin finite element discretization proceeds by deriving a weak form of (1). The domain is subdi-
vided by a triangulation, T H , into a set of non-overlapping elements, j, such that X ¼

S
j2T H

j. Then, define Vp
H , a vector-val-

ued function space of discontinuous, piecewise-polynomials of degree p,
Vp
H � fv 2 L2ðXÞjv jj 2 Pp; 8j 2 THg:
The discontinuous Galerkin formulation is obtained by multiplying (1) by a test function, vH 2 ðVp
HÞ

m, integrating by parts,
and accounting for the jumps from element-to-element by carefully defining the inviscid and viscous fluxes on element
boundaries. The resulting DG formulation can then be expressed as the solution uHð�; tÞ 2 ðVp

HÞ
m to the semi-linear weighted

residual (linear in the second argument), RðuH;vHÞ ¼ 0; 8vH 2 ðVp
HÞ

m.
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The inviscid flux functions utilized in this work are described in more detail in the remainder of the paper. The viscous
flux contributions are discretized according to the second form of Bassi and Rebay [34]. The specific implementation of
boundary conditions for the Navier–Stokes equations can be found in Oliver [37] and Fidkowski et al. [38]. Additional details
of the entire discretization can also be found in Barter [39].

2.2. Artificial viscosity matrix

When artificial viscosity is added to the system for the purposes of resolving discontinuities, the viscous flux is aug-
mented such that
F v
i ðu;ruÞ ¼ Av

ij þ A�ij
� � @u

@xj
;

A simple, diagonal artificial viscosity matrix that accounts for anisotropic meshes is given by,
A�ij ¼ �̂ð�Þdiag I hi

�h

� �
dij; ð2Þ

�̂ �
0; � 6 hL;

1
2 hH sin p ��hL

hH�hL
� 1

2

� �h i
þ 1

� �
; hL < � < hH;

hH; �P hH;

8><>:

where �̂ is the applied artificial viscosity, �h is the arithmetic mean of hðxÞ 2 Rd, a local vector-measure of the element size
described below, and I 2 Rm is a vector of ones. �̂ is scaled to smoothly vary between zero and a maximum value, hH , as �, the
artificial viscosity produced by the shock capturing method, varies between hL, a minimum value, and hH . The determination
of �, based on a non-linear shock switch, will be described in greater detail in Section 4. hL and hH are defined to be propor-
tional to k�h=p, specifically, hL ¼ 0:01kmax

�h=p and hH ¼ kmax
�h=p, and kmax is the maximum wave speed of the system.

The local measure of element size is a linear variation throughout the computational mesh. Using continuous, linear, no-
dal basis functions, hðxÞ can be written as,
hðxÞ ¼
Xdþ1

k¼1

HkukðnðxÞÞ;
where Hk 2 Rd is the average value of the bounding box vectors of all elements bordering the kth principal node of an ele-
ment and uk is the nodal, linear basis function associated with the node. The arithmetic mean, �hðxÞ, is therefore a continu-
ously varying scalar function throughout the domain,
�hðxÞ ¼ 1
d

Xd

i¼1

Xdþ1

k¼1

HkiukðnðxÞÞ:
For compressible flow, the artificial viscosity matrix can be modified to better preserve the behavior of the shock transition
given by the Euler equations. The Rankine–Hugoniot shock jump relations state that, for the steady Euler equations, total
enthalpy is conserved across the shock [40]. Therefore, when dealing with the compressible Navier–Stokes equations, A�ij
in (2) can be substituted with ~A�ij, an artificial viscosity matrix designed to preserve total enthalpy.

Isenthalpic formulations of the Euler equations have long been considered in the computational community. Lytton [41]
and Jameson [42] are two examples of numerical discretizations designed to preserve total enthalpy throughout the flow
field. In the steady Euler equations, the energy and mass equations are identical if the constant factor, H, is removed from
the energy equation. However, discrete schemes do not necessarily satisfy this property. A discrete solution with constant
H is admissible if the numerical dissipation applied to the energy equation reduces to the numerical dissipation applied
to the continuity equation when qH is replaced by q [43]. Consequently, the application of the artificial viscosity matrix
to the conservative state vector according to (2) would violate this criteria because the dissipation in the energy equation
would act on qE. One approach to derive an isenthalpic formulation of the artificial viscosity matrix is to apply the previous
diagonal matrix, A�ij to a modified state vector which includes qH instead of qE. Specifically, ~A�ij is defined as,
~A�ijru ¼ A�ijr~u; ð3Þ
where ~u ¼ ½q;qv i;qH�T .
Another formulation of an artificial viscosity matrix for the preservation of total enthalpy uses the Navier–Stokes viscosity

matrix for an ideal gas. If the Prandtl number is set to, Pr ¼ 0:75, one can show that this choice gives shock transitions with
constant total enthalpy. This approach is used by Persson and Peraire [15], but is not applied to the results presented in this
work.

In addition to the artificial viscosity matrix, numerical diffusion is added to the DG FEM scheme through the approximate
flux function as well. For a flux function to ensure that total enthalpy is constant throughout the domain, it must also apply
the same dissipation to the energy equation as the continuity equation multiplied by the constant factor, H. Jameson [43]
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describes and presents a few approximate flux functions that satisfy this criteria. In this work, two different approximate flux
functions were employed. The first is the Roe flux function [44], which does not ensure constant total enthalpy, and the other
is the modification of the van Leer flux difference splitting by Hänel et al. [45], which is designed to preserve total enthalpy.

The performance of both the isenthalpic artificial viscosity matrix, eA�ij, and the non-isenthalpic diagonal matrix, A�ij, is
demonstrated in one of the numerical examples presented in Section 5. The same example also depicts the performance
of the two approximate flux functions, the Roe flux function and the van Leer–Hänel flux function.

3. Motivation for smooth artificial viscosity

The one-dimensional viscous Burgers equation is employed to demonstrate the benefits of a smooth variation in artificial
viscosity, compared to a non-smooth representation. The governing equation is modified to support a steady-state shock
solution,
@

@x
1
2

u2
� �

¼ auþ @

@x
mðxÞ @u

@x

� �
þ f ðxÞ; for x 2 X � R; ð4Þ
where uðxÞ is the state variable, mðxÞ is the viscosity, a is a constant ða ¼ �0:1Þ and the forcing term, f ðxÞ, is set such that the
exact, steady-state solution with m ¼ 0 has a shock at x ¼ 0,
uðxÞ ¼
2þ sin px

2

� 	
; x < 0;

�2� sin px
2

� 	
; x > 0:

(
ð5Þ
The viscosity, mðxÞ, is prescribed to be either a piecewise-constant or smooth Gaussian function, as depicted in Fig. 1. The
piecewise-constant viscosity is applied to the cells immediately adjacent to the shock location with adjustable amplitude,
mðxÞ ¼
b h

p kuðxÞk1; �h 6 x 6 h

0; else;

(
; ð6Þ
where b is an adjustable parameter. The Gaussian distribution of viscosity is specified to have a standard deviation equal to
the cell size and the same total area as the piecewise-constant rectangle between x 2 ½�h;h�.

To perform the comparison, (4) is discretized using sixth order Legendre polynomials in a discontinuous Galerkin formu-
lation. A global L2-norm of the solution error and an H1-norm of the error outside of the shock layer is measured between the
discrete and exact solution for the two viscosity formulations. The error norms are defined as,
ku� uHkL2 ¼
Z

X
ðu� uHÞ2 dx

� �1=2

;

ku� uHkH1 ¼
Z

Xnds

ðu� uHÞ2 þ
du
dx
� duH

dx

� �2

dx

" #1=2

;

where uH is the discrete solution and ds is the shock layer, defined to be the distance extending from x ¼ 0 to where the dis-
crete solution is first within 0.5% of the exact solution.
Fig. 1. Distributions of piecewise-constant and Gaussian artificial viscosity as applied to the 1D modified Burgers equation.
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The comparison between the two viscosity representations is made at three different viscosity amplitudes
ðb ¼ 0:3; 1:0; 3:0Þ. The solution behavior for low, moderate, and high values of viscosity are shown in Fig. 2 with the error
norm comparison in Table 1. At a low viscosity amplitude, the numerical oscillations in uðxÞ are damped, but oscillations still
remain in the derivative, uxðxÞ, for both solutions, suggesting that the shock is not entirely resolved. At a higher viscosity
amplitude, the Gaussian viscosity solution is smooth for both uðxÞ and uxðxÞ, but the piecewise-constant viscosity solution
still has significant oscillations in uxðxÞ. These oscillations are due to the conservation of the flux, ðu2=2þ muxÞ, across element
boundaries. A jump in m, requires a similar jump in ux, but there is no change in ux that can compensate for a jump to m ¼ 0.
Thus, for higher-order solutions, this jump in the viscosity induces fluctuations throughout the element. Finally, for much
higher viscosity amplitudes, the Gaussian viscosity solution remains well-behaved, but the piecewise-constant solution suf-
fers from oscillations in both uðxÞ and uxðxÞ.

Since the solutions for uðxÞ are quite similar, except at the highest viscosity amplitude, the L2-norm values of the solution
error are also quite similar. However, the greater accuracy of the Gaussian viscosity solution is reflected in the H1-norm val-
ues. At the high viscosity amplitude, the H1-norm of the error for the Gaussian viscosity solution is smaller than the piece-
wise-constant solution by two orders of magnitude.

3.1. Multiple dimension issues

In one dimension, the errors induced by the shock for the non-smooth viscosity solution are generally confined to a region
near the shock. In multiple dimensions, however, this is no longer the case. The jumps in viscosity from one element to the
next along a discontinuity, due to changes in the shock strength, cell size and orientation, introduce errors both normal and
tangential to the shock front. These errors create variations in the flow field which can convect downstream and pollute the
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Fig. 2. Comparison of piecewise-constant and Gaussian viscosity solutions for modified Burgers equation across three different viscosity amplitudes (40
elements, p ¼ 6).



Table 1
Comparison of L2 and H1 error norms for piecewise-constant and Gaussian viscosity solutions of modified Burgers equation (40 elements, p ¼ 6).

Low viscosity Medium viscosity High viscosity

H1-norm L2-norm H1-norm L2-norm H1-norm L2-norm

Piece-const 0.873 0.124 0.680 0.227 19.196 0.387
Gaussian 0.548 0.134 0.180 0.244 0.167 0.405
b in (6) 0.3 1.0 3.0
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solution accuracy. For instance, consider the inviscid, supersonic flow over a cylinder depicted in Fig. 3. Using a elementwise-
constant representation of artificial viscosity, significant oscillations in total pressure arise behind the shock front. While to-
tal pressure behind the bow shock is not constant, it should vary smoothly as the strength of the shock changes due to its
curvature. The three lines shown in Fig. 3b are total pressure measurements taken from three grids across two uniform
refinements along the solid black line in Fig. 3a. As the grid becomes finer, the total pressure oscillations persist. These vari-
ations in the solution downstream of a shock were previously observed by Quattrochi [46].

4. A PDE-based artificial viscosity model

In this section a PDE-based artificial viscosity model is proposed. We first describe the elementwise-constant (non-
smooth) model. Then, extend this to the PDE-based formulation.

4.1. Non-smooth artificial viscosity

The non-smooth formulation of artificial viscosity is defined by an elementwise non-linear shock switch,
Fig. 3.
flow ar
�jj ¼
�hðxÞ

p
kmaxðuÞSjðuÞ; ð7Þ
where SjðuÞ : Rm ! R is the non-linear switch or indicator function that detects the spurious numerical oscillations in ele-
ment, j, and determines the amount of artificial viscosity to add. The specifics of the shock switch are discussed in greater
length in Section 4.3. As proposed by Persson and Peraire [15], the shock switch is multiplied by an h=p-scaling to allow for
sub-cell shock resolution.

4.2. PDE-based artificial viscosity

To smooth the elementwise-constant artificial viscosity, a diffusion equation is chosen as the PDE model for artificial
viscosity,
@�
@t
¼ r � g

s
r�

� �
þ 1

s

�hðxÞ
p

kmaxðuÞSjðuÞ � �
" #

in X � Rd � Rþ; ð8Þ

@�
@n̂
¼ �1 � �

L
on @X; ð9Þ
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where s is an appropriate time constant and g 2 Rd�d is the diffusivity. The working variable of the PDE is
�ðx; tÞ : Rd � Rþ ! R. For the sake of brevity, this PDE will be referred to as the artificial viscosity equation and its formulation
of � will be referred to as PDE-based artificial viscosity. The artificial viscosity is appended to the state vector of the Navier–
Stokes equations and the artificial viscosity equation is discretized using the same DG approximation as described in
Section 2.

The shock indicator, SjðuÞ, acts as a forcing term that drives � to be non-zero in the vicinity of discontinuities. The diffu-
sion term, governed by the parameter, g, ensures that the viscosity is smooth (no large jumps at element edges) and that
artificial viscosity produced in one element diffuses to its neighbors.

The artificial viscosity equation is cast with a time derivative and time constant, s, defined such that � evolves approxi-
mately as fast as the primary system of equations. This time scale is chosen to approximate the time it takes the fastest wave
speed to traverse the resolution scale of the solution. To this end, the time constant, s, is defined by
s ¼ minihi

C1pkmaxðuÞ
; C1 ¼ 3:
The second parameter of the artificial viscosity equation is the diffusion coefficient, g 2 Rd�d. For dimensional consistency it
must have units of Length2, and, so that the viscosity only spreads to neighboring elements, g should be made an explicit
function of hðxÞ. Thus, an appropriate setting of g is simply,
g ¼ C2diagð½h2
x ;h

2
y ; h

2
z �

TÞ;
The quantity, g=s, is therefore,
g

s
¼ C1C2

pkmaxðuÞ
minihi

diagð½h2
x ; h

2
y ;h

2
z �

TÞ; C1C2 ¼ 15: ð10Þ
Since a shocks can occur at a boundary, and conceivably intersect a boundary at any angle, a boundary condition was sought
that would not have significant impact on the behavior of the viscosity in the domain. Using a Green’s function analysis, a
Robin boundary condition was shown to work well, in which the gradient of � is proportional to the difference between the
boundary value and an ambient state (�1 ¼ 0) over a local length scale, L ðL ¼ 10h � n̂Þ [39].

4.3. Shock indicators

The shock indicator, SjðuÞ, can take many forms. This research has employed two different indicators, which are pre-
sented in this section.

4.4. Resolution indicator

A resolution-based indicator was introduced by Persson and Peraire [15] as their method of detecting shocks to demon-
strate the sub-cell shock capturing capabilities of artificial viscosity with higher-order, DG solutions. This indicator treats the
higher-order solution as though it were comprised of a sequence of Fourier modes. For smooth flows, the coefficients of
increasing Fourier modes should die away rapidly. In a true discontinuity, however, all frequency modes are present. This
idea is similar to error indicators for adaptation in spectral methods [47]. With this concept in mind, a component of the
state vector at any point in a higher-order approximation, can be represented as,
uðxÞ ¼
XNðpÞ
k¼1

Uk/kðxÞ;
where /k are the basis functions, Uk are the associated weights and NðpÞ is the size of the higher-order expansion of degree p.
Assuming an orthogonal basis,
ûðxÞ ¼
XNðp�1Þ

k¼1

Uk/kðxÞ;
where û is the truncated representation of the state vector at order p� 1.
With the definitions of u and û, the resolution indicator can be defined by,
Fj ¼ log10

f � f̂ ; f � f̂
D E

f ; fh i

0@ 1A; ð11Þ
where h�; �i represents the standard L2 inner-product, and f ¼ f ðuÞ : Rm ! R is a component or function of the state vector. As
with Persson and Peraire, this work relies on density as a reliable quantity for f ðuÞ.

The final scaling of the indicator used by Persson and Peraire is such that it varies smoothly between zero and a maximum
value,
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SjðFj; hS;w0;DwÞ ¼

0; Fj 6 w0 � Dw;

hS; Fj P w0 þ Dw;
hS
2 1þ sin pðFj�w0Þ

2Dw

� �
; Fj � w0k k < Dw;

8>><>>:

where hS is a maximum value ðhS ¼ 1Þ and w0 and Dw are empirically determined constants. In a Fourier expansion, coeffi-
cients decay at the rate of 1=p2 and since the resolution indicator works with the log of squared quantities, w0 should roughly
scale as w0 � �4log10ðpÞ. In this work, w0 � �ð4þ 4:25log10ðpÞÞ and Dw � 0:5.

4.5. Jump indicator

The idea to use the uniquely DG inter-element jumps as a discontinuity indicator was first proposed by Dolejsi et al. [48]
and also adopted by Krivodonova et al. [49] based on the work of Adjerid et al. [50]. For a smooth flow solution, the mag-
nitude of the inter-element jumps should be convergent,
jsgtj ¼ Oðhpþ1Þ; smooth flow;
Oð1Þ; discontinuity;

(

where g ¼ gðuÞ : Rm ! R is a state vector component or derived quantity,

Therefore, one can easily envision an indicator that measures jumps in a state quantity or a function to denote regions
near a discontinuity. Specifically, the jump indicator is cast as,
Jj ¼
1
j@jj

Z
@j

sgt

fgg





 



 � n̂ds; ð12Þ
where jumps in pressure are chosen as the functional quantity, gðuÞ, to locate shocks. Additionally, for the purposes of lin-
earization, the absolute value function was substituted with a C1-continuous approximation,
jxj 	 x2

signðxÞxþ a
;

where a is an input parameter. Similar to the resolution indicator, the final scaling of the jump indicator is smoothly limited
by Sj ¼ SjðJj; hS;w0;DwÞ, where hS is the same maximum value ðhS ¼ 1Þ and w0 and Dw are empirically determined constants,
different from those of the resolution indicator. This work found that w0 � �ð2:25þ 3log10ðpÞÞ and Dw � 0:5 were reliable
quantities.

It is important to note that the resolution indicator is a function of the state in a single element. The jump indicator, how-
ever, is dependent on the state values in neighboring elements as well. In the non-smooth viscosity approach to shock cap-
turing, using the jump indicator with an otherwise compact discretization of diffusion terms would expand the numerical
stencil of the entire scheme. This is because the artificial viscosity that is applied along element edges becomes dependent
on the state values in immediate and second-degree neighbor elements as well. In contrast, with the artificial viscosity equa-
tion, the jump indicator is a source function and does not spread the numerical footprint of the scheme.

5. Numerical results

The above sections described two different artificial viscosity models: non-smooth and PDE-based. This section presents
test cases designed to compare and contrast the performance of the two models.

5.1. Solution method

Although the focus of this work was on steady-state solutions, the unsteady term of the governing equations was retained
to improve the initial transient behavior of the solver. Specifically, backward Euler time stepping was used with time step
ramping. The restarted GMRES algorithm was used to iteratively solve the resulting linear system. To further aid iterative
convergence of the linear system, an ILU factorization is used as a preconditioner where the factorization is performed using
a reordering of elements into lines [51]. The lines are a unique set of elements created by the coupling between elements in a
p ¼ 0 discretization of a scalar, linear convection–diffusion equation [38]. All of the higher-order solutions were arrived at
via p-sequencing. Meaning, lower-order solutions served as the initial condition for higher-order solutions.

5.2. Convergence rate accuracy

5.2.1. Smooth flow
Both the resolution and jump indicators are designed to highlight under-resolved flow regions, such as those in the prox-

imity of a discontinuity, that require the addition of artificial viscosity. However, for smooth, resolved flows, the shock indi-
cators should not flag any troubled cells so that artificial viscosity is not unnecessarily added to the discretization.
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Fig. 4. Gaussian bump domain and mesh for smooth flow, shock indicator accuracy study (1600 elements).
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The preservation of accuracy in smooth flow was tested on the problem of 2D, inviscid, subsonic flow over a Gaussian
bump at a freestream Mach number of 0.5. An accuracy study of the entropy norm, ks� s1k2, was performed over five grids
representing four uniform grid refinements from 400 to 102,400 elements. The 1600-element mesh is shown in Fig. 4. The
total temperature, total pressure and flow angle were specified at the inflow boundary and the ambient static pressure was
specified at the outflow boundary. Flow tangency was enforced at the upper and lower domain boundaries, and the bump
surface was approximated using cubic geometry elements.
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Fig. 5. Grid convergence rates of entropy norm for inviscid flow over a Gaussian bump, M1 ¼ 0:5 with non-smooth (NS) and PDE-based artificial viscosity
models.
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The nominal grid convergence, without the use of shock capturing, is compared to the non-smooth and PDE-based arti-
ficial viscosity methods in Fig. 5 using both shock indicators. With sufficient flow field resolution, all of the artificial viscosity
models achieve the same accuracy as the nominal results (without artificial viscosity), independent of the shock indicator
used. For the low-order solutions on the coarser meshes, where the flow is not well resolved, the artificial viscosity added
to the discretization increases the error relative to the nominal case.

5.2.2. Discontinuous flow
In addition to their smooth flow behavior, it is also desirable for the shock indicators and the artificial viscosity models to

attain analytic convergence rates for flows with discontinuities as well. For discontinuous functions, the optimal, conver-
gence rate in the L1 norm for an optimal L1 polynomial approximation is Oðh=pÞ [52]. This is because the L1-error is domi-
nated by the discontinuity, which has zero thickness. Thus, the convergence rate in L1 depends on how well the solution can
approximate the thickness of the discontinuity, which is governed by the resolution length scale, h=p.

A verification of the analytic convergence rates for flows with discontinuities was carried out in the context of the mod-
ified Burgers equation with the discontinuous forcing function described in (4) and (5). However, instead of prescribing the
artificial viscosity as an explicit function in space, the non-smooth and PDE-based artificial viscosity models were used. The
results in Fig. 6 demonstrate that the optimal rate is achieved for shock flow cases. The grid convergence rates for the test
case, across three uniform grid refinements, for p = 1–4 are OðhÞ. Multiplying each line by their respective order, p, collapses
all of the lines onto one, confirming the Oðh=pÞ behavior. This is true for both the non-smooth and PDE-based artificial vis-
cosity models and for both the resolution and jump indicators.
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Fig. 6. L1 grid convergence rates for 1D modified Burgers equation, (4) and